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An EPR study on ancient and newly synthesised Egyptian blue
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Abstract

Two sets of ancient roman Egyptian blue (EB) samples and one set of EB samples synthesised in our lab, were analysed by EPR spectroscopy,
a technique not commonly used in this field. The spectroscopic parameters obtained were used to attempt the discrimination of the provenance
and of the manufacturing techniques of the investigated samples.

The results obtained show that EPR technique could be very useful for this purpose.
Furthermore, the similarity of the obtained parameters between the ancient and new samples testify the successful attempt to reproduce the

EB according to the chemical knowledge.
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. Introduction

.1. Egyptian blue

The number of reports dealing with Egyptian blue (EB
erein) has been remarkably increasing in the last few years,
lso on non-specialised journals. It is not surprising in view
f the growing interest in ancient things and on the techniques
mployed in the past.

EB appeared in Egypt during the third millennium before
he Common Era and was used at least for 3000 years as

precious pigment, spreading in the whole Roman Empire.
fter the decline of the Roman Empire itself, the use of this
ynthetic pigment disappeared. This seems to be related to the
oss of the chemical and technological knowledge required
or the synthesis of this pigment.

At the beginning of the XX century, Fouquè[1] and Laurie
t al.[2] attempted both the synthesis of this compound and

he study of the effects of cooking temperature and of the
oncentration of the fluxes.

The use of X-rays[3] allowed the characterisation of EB

it allowed to ascertain that EB and the mineral cuproriv
discovered by Minguzzi in the Vesuvio lava in 1938[4], are
actually the same material.

In more recent years, many researchers got involved
the production and characterisation of EB with differ
procedures and techniques of analysis[5–14], but there i
not a final conclusion yet about the role of the differ
materials and melting temperature. Moreover, to the
of our knowledge, there is only one paper dealing w
an EPR study of an EB sample, and just as a pa
an investigation using different spectroscopic techniq
[15].

1.2. Samples of the present investigation

The ancient EB samples of the present investigation c
from roman wall paintings, which are all dating back to
period between the I century before the C.E. and the II cen
of the C.E.

The sets of the studied samples were labelled as fol
Set N: five samples coming from North-Eastern Italy
s a calcium-copper tetrasilicate (CaCuSi4O10). Moreover,

∗ Corresponding author. Tel.: +39 041 234 8601; fax: +39 041 234 8594.
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ancient romanX regio Venetia et Histria), in particular from
the cities of Verona (two samples from two different sites,
N1 and N2), Vicenza (N3), Pordenone (N4) and Trieste
039-9140/$ – see front matter © 2005 Published by Elsevier B.V.
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(N5). Group S: three samples coming from the Southern
Italy, one from the Museum of Naples (S1, surely made
in the Naples region) and two from the city of Pompei
(S2 and S3). Group M: six modern samples (from M1 to
M6), synthesised according to different recipes (see Section
2). All the samples were synthesised in our lab, with the
exception of M1, which was kindly provided by Prof.
Baraldi.

1.3. EPR spectroscopy

Electron spin resonance (ESR) – or electron paramag-
netic resonance (EPR) – is a spectroscopic technique which
allows to detect and characterise molecules or ions containing
unpaired electrons, namely paramagnetic substances, such as
radicals and many transition metal ions[16,17]. This tech-
nique analyses the paramagnetic samples without altering or
destroying them. This is essential when dealing with archae-
ological samples, since the researchers are allowed to get
back the samples after the measurements without any kind of
alteration or damage.

As far as this paper is concerned, we were mainly inter-
ested in the EPR characteristics of the Cu2+ paramagnetic
ion in EB. EPR can detect, as spectral lines, the transitions
allowed between electronic spin states, when an external
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2. Experimental

The archaeological samples were obtained, as dry fine
powder, by a gentle scraping of the painted surface of the wall
fragments. The carbonates due to the mortar substrates were
eliminated by treating the samples with a 1 M HCl solution
followed by repeated washing with water. This treatment was
performed since the un-washed EB samples showed spurious
spectra (Section3).

The synthetic samples were obtained according to the
recipes reported in detail by Mazzocchin et al.[14], which
can be summarised as follows:

• M1: stoichiometric ratio of Si/Ca/Cu, with malachite as
copper source[13];

• M2: stoichiometric ratio of Si/Ca/Cu, with malachite as
copper source[14];

• M3: “Bolognese mixture”[14];
• M4: with silica gel[14], according to the recipe by Schippa

and Torraca[5];
• M5: stoichiometric ratio of Si/Ca/Cu, with KCl as flux

[14];
• M6: stoichiometric ratio of Si/Ca/Cu, with CuO as copper

source.

2.1. Electron paramagnetic resonance (EPR)
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static magnetic fieldH is applied.
The most important EPR characteristic spectral para

ters are:

(a) the number of lines (one or more, depending on the i
action of the electronic unpaired spin with zero or n
zero spin nuclei, respectively (hyperfine interaction)

(b) the position of the spectrum centre with respect to e
nal magnetic field,H (measured in gauss, G), defin
through an adimensional parameter calledg-factor;

(c) the distance between the lines (in gauss units) due
hyperfine interaction;

(d) the line widths (peak to peak, in gauss units).

In the case of polycrystalline (as like as the samples s
ied in this paper) or amorphous samples, each line is us
characterised by three components (one for each refe
axis), in some cases unresolved, defined by three diff
values of theg-factor,gx, gy andgz, related to the ligand fiel
geometry. When the ligand geometry has an axial symm
gx = gy; the spectral line is characterised by the two com
nents ofg: g⊥ (perpendicular or transversal) andg|| (parallel
or longitudinal).

This work deals with the application of the EPR te
nique to get information useful to characterise and cla
EB samples. Three easily measurable spectral param
allowed us to compare ancient roman EB samples of diffe
provenance and to verify in this way whether it was po
ble to classify them. Furthermore, the comparison betw
ancient and modern samples, synthesised according t
ferent recipes, was performed.
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EPR spectra were recorded at room temperature, sin
comparison with a reference spectrum of EB[15] taken a
77◦K did not show any relevant differences in the line sh
and resolution. We used a Bruker E 200D X-band spect
eter equipped with a TE102 microwave resonant cavity. T
instrumental parameters were the following: magnetic
range: 300–4800 G; microwave power: 20 mW; modula
amplitude: 2 G; sweep time: 300 s.

EB samples, each of about 20 mg of fine pow
were put in the resonant cavity inside quartz tube
4 mm internal diameter. A suitable amount of DPPH (�
diphenyl-�-picryl-hydrazyl) powder was used as a refere
(g = 2.0036± 0.0002) for the calculation of the compone
of g [16].

The spectra were digitally recorded, analysed and de
voluted using Win-EPR SimFonia software, kindly provid
by the Bruker Co., and refined by means of Microcal Or
Pro 6.1 software.

2.2. Energy dispersion X-rays spectroscopy (EDS)

EDS analysis were carried out using a Jeol (Tokyo, Ja
JSM 5600 LV scanning electron microscope equipped wi
Oxford Instruments 6587 EDS microanalysis detector.
analyses were performed in low vacuum conditions w
samples did not show charging. EDS microanalysis was m
to obtain information on the elemental composition of
sample and the spectra were collected using ISIS soft
and refined using Microcal Origin Pro 6.1 software.
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2.3. Infrared Spectroscopy (FT-IR)

Absorption spectra in the IR region were collected using
a Nicolet Magna 75 FT-IR spectrometer. Thirty-two signal-
averaged scans were acquired on the samples. Few milligrams
of each sample were diluted in KBr (IR grade, Merck) pellet
of a diameter of about 13 mm.

3. Results and discussion

3.1. EPR spectral pattern

At first sight, the spectra of N, S and M sets of samples
(recorded after the chemical treatment with HCl) seemed to
be very similar among themselves and to the pattern shown
in Fig. 1.

Each spectrum consists of two absorption lines, respec-
tively, corresponding to the components parallel (or longitu-
dinal) and perpendicular (or transversal) (Fig. 1). This is in
agreement with the presence of a unique copper(II) param-
agnetic species, with an unpaired electron in the d9 orbital
and in the B1g ground state of an apparent D4h axial ligand
field geometry[15]. The spectra appear totally unresolved in
their hyperfine components, because of the strong spin–spin
i 2+ of
t
a r in
s ee-
m mple
c e-
t the
p y
P etry,

F trum
o or the
c

but this is not relevant for the aims of the present work. With
the above mentioned spectral features we performed simula-
tions very well fitting the experimental spectra, as shown in
the exemplum ofFig. 1.

3.2. Spurious spectra

Some of the studied samples showed some differences in
the EPR line shapes, not in agreement with the typical one for
this kind of geometry[15–17]. We hypothesised the presence
of some signal superimposed to the one described above for
Cu2+ ion in EB, since both the theoretical assessment and
the simulation attempts did not give satisfactory results. The
chemical treatment with a 1 M HCl solution for 1 h, and the
following repeated rinse with distilled water, allowed us to
eliminate almost all the spurious signals. This procedure was
applied to all the samples.

As an example, inFig. 2the spectral patterns of the sample
S1 before (A) and after (B) the chemical treatment are shown.
The difference between the patterns (A–B), corresponds to
the quenched spurious signal and is consistent with the pres-
ence of a paramagnetic Fe3+ complex, probably due to the
presence of traces of the mortar substrate in the pigment sam-
ples. This hypothesis was also confirmed by a study on the
EB supporting mortars in which the presence of significant
a 3+ rge
a

pe 2
h tion
a rious
s rum,
t erfer-
i l

F ) the
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A

nteraction due to the very high Cudensity. The ranges
he measured values ofg|| = 2.32–2.34 andg⊥ = 2.055–2.060
re consistent with a ligand field either in octahedral o
quare planar geometry[16,17]. These features are in agr
ent with the EPR characterisation of an ancient EB sa

arried out by Mirti et al.[15], where a square planar geom
ry of the ligand field was stated. The high values (≈4) of
arameterG = (g|| − 2)/(g⊥ − 2), according to the model b
rocter et al.[18,19], should suggest an octahedral geom

ig. 1. EPR experimental (solid line) and simulated (dotted line) spec
f an EB sample, with the indication of the three parameters used f
haracterisation.
mounts of Fe was detected, corresponding to a very la
nd unresolved EPR line centered atg ≈ 2 [20].

Some samples kept a residual spurious signal (Ty
erein) even after the chemical treatment. A deconvolu
nalysis allowed us to simulate, for each sample, the spu
ignal and, by subtracting it from the experimental spect
o evaluate the spectral pattern in absence of type 2 int
ng spurious signal. As an example, inFig. 3the experimenta

ig. 2. EPR spectral patterns of N4 sample before (A) and after (B
hemical treatment with HCl 1 M. A–B representing the difference betw
and B.
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Fig. 3. EPR spectrum of S3 sample, which presents a superimposed spurious
spectral line, simulated as X. The S3-X line represents the difference between
S3 and X.

spectrum of S3, the simulated spurious spectrum X and their
difference, S3-X, are shown. The last spectrum is very similar
to the ones obtained after chemical treatment (see M1 sample
spectrum inFig. 3). The X line is characterized by param-
eters consistent with the presence of a copper(II) complex
with parallel and longitudinal components totally unresolved.
This could be due to the presence of a fraction of very high
density Cu(II) clusters, as like as “clots in an unsuccessful
pudding”.

3.3. Useful parameters for the classification of the
samples

The calculation ofg and linewidth components (g⊥, g||,
W⊥, W||, respectively) could be done trough an assignment
by means of repeated simulation, until they fit the experimen-
tal spectra, as shown inFig. 1. Since the simulation processes
are time consuming, the values of only three parameters,g⊥,
g|| andW⊥ will be considered first. Those values can be easily
and directly obtained from the experimental spectrum, with
a little error (seeFig. 1). Simulation techniques should be
employed only for cases in which a more refined determi-
nation of the parametric values is required, i.e. forW||, the
measurement of which can be affected by a relevant error if
directly performed on the spectra.

Standard deviations of 0.001 for theg values, and of 1 G
f

3

W rim-
p eters
m con-

Fig. 4. Plot ofg longitudinal component values (g||) vs. the line width of
the transversal component (W⊥) of the EPR spectra for all the EB tested
samples.

trary, the big errors in the measurement of the M6 sample,
which was then eliminated from this analysis, are due to this
signal.

The parameters concerning the sample S3 are also affected
by the type 2 superimposed signal, but this effect does not
compromise its assignment zone (see below).

All the parameters values reported in the plots concern
the spectra of the samples after carbonate elimination. In
both plots inFigs. 4 and 5we can recognize three separated
zones. In the first one (top-right), here named zone 1, all the
S roman samples are localized. In the second zone (bottom-
left, zone 2), we find all the N roman samples, except the
two from Verona (N1 and N2). These latter are localized
in a third zone (top-left, zone 3). All the newly synthesised
samples M appear grouped in a cluster that is central
respect to the other samples and mainly superimposed to the
zone 2.

F f
t ted
s

or theW⊥ linewidth values were evaluated.

.4. Classificatory analysis

In Figs. 4 and 5, respectively,g⊥ versusW⊥ andg|| versus
⊥ plots are shown. The simulations show that the supe
osed type 2 spurious signal does not affect the param
easured for the experimental spectrum M5. On the
ig. 5. Plot ofg transversal component values (g⊥) vs. the line width o
he transversal component (W⊥) of the EPR spectra for all the EB tes
amples.
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On the one hand, these results are in a good agreement with
the results obtained by means of FT-IR spectroscopy, while on
the other hand EDS spectra did not show any significant corre-
lation for the discrimination of the samples according to their
geographical provenance. It is worth noting, on the contrary,
that the plot in which Cu versus Ca peak areas are compared,
an extreme position of N1 and N2 samples is shown with
respect to all the other samples, and this is in agreement with
the fact that they belong to the separate EPR zone 3.

4. Conclusions

The experimental results show that EPR spectroscopy can
be useful in the characterisation of EB samples and also to
get interesting information on the similarity degree inside a
set of samples, in order to give complementary suggestions
to the archaeological research.

In particular:

(a) The peculiar shape of EB EPR spectrum, which is very
different from the ones of all the other blue pigments
(some of which are not EPR detectable), allows the iden-
tification of the EB pigment.

(b) The clustering of the two samples N1 and N2 in a dif-
ferent zone of the plot than the other N samples suggests

iods
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b ess-

ful. This could also be evidence that many recipes to obtain
EB pigments did exist in the Roman Empire period. The
wider distribution in the parametric values of the examined
Roman samples with respect to the M set of samples can
be explained by considering that Roman craftsmen did not
calculate, of course, the stoichiometry of components, as a
modern chemist would do, but they simply used empirical
recipes, which were rather variable, depending on the region,
the period and the school.
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